Skip to main content

Advertisement

Log in

Human papillomavirus: current status and issues of vaccination

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

An association between human papillomavirus (HPV) infection and the development of cervical cancer was initially suggested over 30 years ago, and today there is clear evidence that certain subtypes of HPV are the causative agents of such malignancies. Papillomaviruses make up a vast family that comprises hundreds of different viruses. These viruses infect epithelia in humans and animals and cause benign hyperproliferative lesions, commonly called warts or papillomas, which can occasionally progress to squamous cell cancer. HPV infections are considered the most common among sexually transmitted diseases. One of the most prevalent cancer types induced by HPV (mostly types 16 and 18) is cervical cancer. Vaccination is the most effective means of preventing this infectious disease. These prophylactic vaccines, based on virus-like particles (VLPs), are extremely effective in providing protection from infection in almost 100 % of cases. VLP vaccines of HPV are subunit vaccines consisting only of the major viral capsid protein of HPV. There are two types of vaccine available: bivalent vaccine (against HPV-16/18) and quadrivalent vaccine (against HPV-6/11/16/18). Second-generation prophylactic HPV vaccines, currently in clinical trials, may hold several merits over the current bivalent and quadrivalent vaccines, such as protection against additional oncogenic HPV types, less dependence on cold-chain storage and distribution, and non-invasive methods of delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  2. Schiffman M, Kjaer SK (2003) Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr 31:14–19

    Article  PubMed  Google Scholar 

  3. Campo M (2003) Papillomavirus and disease in humans and animals. Vet Comp Oncol 1:3–14

    Article  CAS  PubMed  Google Scholar 

  4. zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384:260–265

    Article  CAS  PubMed  Google Scholar 

  5. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  CAS  PubMed  Google Scholar 

  6. Ramet J, van Esso D, Meszner Z, European Academy of Paediatrics Scientific Working Group on Vaccination (2011) Position paper—HPV and the primary prevention of cancer; improving vaccine uptake by paediatricians. Eur J Pediat 170:309–321

    Article  Google Scholar 

  7. Cutts FT, Franceschi S, Goldie S, Castellsague X, de Sanjose S, Garnett G, Edmunds WJ, Claeys P, Goldenthal KL, Harper DM, Markowitz L (2007) Human papillomavirus and HPV vaccines: a review. Bull World Health Org 85:719–726

    Google Scholar 

  8. Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS, Markwitz LE (2007) Prevalence of HPV infection among females in the United States. JAMA 297:813–819

    Article  CAS  PubMed  Google Scholar 

  9. National Cancer Registry Project (NCRP) Biennial Report (2001) New Delhi: Indian Council of Medical Research

  10. Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers EM (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401(1):70–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bouwes Bavinck JN, Neale RE, Abeni D, Euvrard S, Green AC, Harwood CA, de Koning MN, Naldi L, Nindl I, Pawlita M, Pfister H, Proby CM, Quint WG, ter Schegget J, Waterboer T, Weissenborn S, Feltkamp MC, EPI-HPV-UV-CA group (2010) Multicenter study of the association between betapapillomavirus infection and cutaneous squamous cell carcinoma. Cancer Res 70(23):9777–9786

    Article  PubMed  Google Scholar 

  12. zur Hausen H (1987) Papillomaviruses in human cancer. Appl Pathol 5(1):19–24

    CAS  PubMed  Google Scholar 

  13. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350

    Article  CAS  PubMed  Google Scholar 

  14. Doorbar J (2006) Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond) 110(5):525–541

    Article  CAS  Google Scholar 

  15. Schelhaas M, Ewers H, Rajamäki ML, Day PM, Schiller JT, Helenius A (2008) Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4(9):e1000148

    Article  PubMed Central  PubMed  Google Scholar 

  16. Okun MM, Day PM, Greenstone HL, Booy FP, Lowy DR, Schiller JT, Roden RB (2001) L1 interaction domains of papillomavirus L2 necessary for viral genome encapsidation. J Virol 75:4332–4342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Holmgren SC, Patterson NA, Ozbun MA, Lambert PF (2005) The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol 79:3938–3948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Finnen RL, Erickson KD, Chen XS, Garcea RL (2003) Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77:4818–4826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ishii Y, Ozaki S, Tanaka K, Kanda T (2005) Human papillomavirus 16 minor capsid protein L2 helps capsomeres assemble independently of intercapsomeric disulfide bonding. Virus Genes 2005(31):321–328

    Article  Google Scholar 

  20. Kämper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80:759–768

    Article  PubMed Central  PubMed  Google Scholar 

  21. Campos S, Ozbun MA (2009) Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One 4:e4463

    Article  PubMed Central  PubMed  Google Scholar 

  22. Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, Streeck RE, Sapp M (2006) Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J Virol 80:6691–6696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Garcea RL, Chen X (2007) Papillomavirus structure and assembly. In: Garcea RL, DiMaio D (eds) The papillomaviruses. Springer, New York, pp 69–88

    Chapter  Google Scholar 

  24. Danos O, Engel LW, Chen EY, Yaniv M, Howley PM (1983) Comparative analysis of the human type 1a and bovine type 1 papillomavirus genomes. J Virol 46:557–566

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 2010(7):11

    Article  Google Scholar 

  26. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  CAS  PubMed  Google Scholar 

  27. Grabowska AK, Riemer AB (2012) The Invisible Enemy—how human papillomaviruses avoid recognition and clearance by the host immune system. Open Virol J 6:249–256

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ashrafi GH, Brown DR, Fife KH, Campo MS (2006) Downregulation of MHC class I is a property common to papillomavirus E5 proteins. Virus Res 120:208–211

    Article  CAS  PubMed  Google Scholar 

  29. Ashrafi GH, Haghshenas M, Marchetti B, Campo MS (2006) E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int J Cancer 119:2105–2112

    Article  CAS  PubMed  Google Scholar 

  30. Antonsson A, Payne E, Hengst K, McMillan NA (2006) The human papillomavirus type 16 E7 protein binds human interferon regulatory factor-9 via a novel PEST domain required for transformation. J Interferon Cytokine Res 26:455–461

    Article  CAS  PubMed  Google Scholar 

  31. Wang KL (2007) Human papillomavirus and vaccination in cervical cancer. Taiwan J Obstet Gynecol 46:352–362

    Article  PubMed  Google Scholar 

  32. Urman CO, Gottlieb AB (2008) New viral vaccines for dermatologic disease. J Am Acad Dermatol 58:361–370

    Article  PubMed  Google Scholar 

  33. Rowen D (2005) Human papillomavirus infection and anogenital warts. In: Kumar B, Gupta S (eds) Sexually Transmitted Infections, 1st edn. Elsevier, New Delhi, pp 215–224

    Google Scholar 

  34. Joura EA, Leodolter S, Hernandez-Avila M, Wheeler CM, Perez G, Koutsky LA, Garland SM, Harper DM, Tang GW, Ferris DG, Steben M, Jones RW, Bryan J, Taddeo FJ, Bautista OM, Esser MT, Sings HL, Nelson M, Boslego JW, Sattler C, Barr E, Paavonen J (2007) Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 369(9574):1693–1702

    Article  CAS  PubMed  Google Scholar 

  35. Paavonen J, Jenkins D, Bosch FX, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter DL, Kitchener HC, Castellsague X, de Carvalho NS, Skinner SR, Harper DM, Hedrick JA, Jaisamrarn U, Limson GA, Dionne M, Quint W, Spiessens B, Peeters P, Struyf F, Wieting SL, Lehtinen MO, Dubin G (2007) HPV PATRICIA study group. 2007. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369(9580):2160–2170 Erratum in: Lancet. 2007; 370(9596):1414

    Article  Google Scholar 

  36. Mello MM, Abiola S, Colgrove J (2012) Pharmaceutical companies’ role in state vaccination policymaking: the case of human papillomavirus vaccination. Am J Public Health 102:893–898

    Article  PubMed  Google Scholar 

  37. Garcini LM, Galvan T, Barnack-Tavlaris JL (2012) The study of human papillomavirus (HPV) vaccine uptake from a parental perspective: A systematic review of observational studies in the United States. Vaccine 30:4588–4595

    Article  CAS  PubMed  Google Scholar 

  38. Liu TY, Hussein WM, Toth I, Skwarczynski M (2012) Advances in peptide-based human papillomavirus therapeutic vaccines. Curr Top Med Chem 12(14):1581–1592

    Article  CAS  PubMed  Google Scholar 

  39. Pandhi D, Sonthalia S (2011) Human papilloma virus vaccines: Current scenario. Indian J Sex Transm Dis 32(2):75–85

    Article  PubMed Central  PubMed  Google Scholar 

  40. Bonati M, Garattini S (2009) Controlling cervical cancer. Pharmacoeconomics 27(2):91–93

    Article  PubMed  Google Scholar 

  41. Garland SM, Hernandez-Avila M, Wheeler CM et al (2007) Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. New Engl J Med 356:1928–1943

    Article  CAS  PubMed  Google Scholar 

  42. La Torre G, de Waure C, Chiaradia G, Mannocci A, Ricciardi W (2010) HPV vaccine efficacy in preventing persistent cervical HPV infection: a systematic review and meta-analysis. Vaccine 25:8352–8358

    Article  Google Scholar 

  43. Castellsague X, Munoz N (2003) Cofactors in human papillomavirus carcinogenesis—role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr 31:20–28

    Article  PubMed  Google Scholar 

  44. Kaarthigeyan K (2012) Cervical cancer in India and HPV vaccination. Indian J Med Paediatr Oncol 33:7–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Schiffman M, Castle PE, Jeronim J, Rodrigue AC, Wacholde S (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907

    Article  CAS  PubMed  Google Scholar 

  46. Kohaar I, Thakur N, Salhan S, Batra S, Singh V, Sharma A et al (2007) TNFα -308 G/A polymorphism as a risk factor for HPV associated cervical cancer in Indian population. Cellular Oncol 29:249–256

    CAS  Google Scholar 

  47. Franceschi S, Rajkumar T, Vaccarella S, Gajalakshmi V, Sharmila A, Snijders PJ et al (2003) Human papillomavirus and risk factors for cervical cancer in Chennai, in India: a case control study. Int J Cancer 107:127–213

    Article  CAS  PubMed  Google Scholar 

  48. Sowjanya AP, Jain M, Poli UR (2005) Prevalence and distribution of high-risk human papillomavirus (HPV) types in invasive squamous cell carcinoma of the cervix and in normal women in Andhra Pradesh, India. BMC Infect Dis 5:116–122

    Article  PubMed Central  PubMed  Google Scholar 

  49. Indian Council of Medical Research (2010) Annual Report, 2010–2011. http://www.icmr.nic.in/annual/2010-11/non_comm.pdf

  50. Franceschi S (2005) The International Agency for Research on Cancer (IARC) commitment to cancer prevention: the example of papillomavirus and cervical cancer. Recent Result Cancer Res 166:277–297

    Article  Google Scholar 

  51. Jones SB (1999) Cancer in the developing world: a call to action. Brit Med J 319:505–508

    Article  CAS  PubMed  Google Scholar 

  52. Schiller JT, Nardelli-Haefliger D (2006) Chapter 17: Second generation HPV vaccines to prevent cervical cancer. Vaccine 24(Suppl 3):S3/147–S3/153

    CAS  Google Scholar 

  53. Stanley M (2010) Prospects for new human papillomavirus vaccines. Curr Opin Infect Dis 23:70–75

    Article  CAS  PubMed  Google Scholar 

  54. Clinical Trials (2013) Broad Spectrum HPV (Human Papillomavirus) Vaccine Study in 16-to 26-Year-Old Women (V503-001 AM3). http://clinicaltrials.gov/ct2/show/NCT00543543

  55. Kiatpongsan S, Campos NG, Kim JJ (2012) Potential Benefits of Second-Generation Human Papillomavirus Vaccines. PLOS ONE 7(11):e48426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Khan FH (2009) The Elements of Immunology, 1st edn. Pearson Education, India

  57. Leder C, Kleinschmidt JA, Wiethe C, Muller M (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol 75:9201–9209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Huang CH, Monie A, Alvarez RD, Wu TC (2007) DNA vaccines for cervical cancer: from bench to bedside. Exp Mol Med 39:679–689

    Article  Google Scholar 

  59. Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RB, Lowy DR, Kast WM, Schiller JT (1998) Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA 95:1800–1805

    Article  CAS  PubMed  Google Scholar 

  60. Roden RB, Ling M, Wu TC (2004) Vaccination to Prevent and Treat Cervical Cancer. Human Path 35(8):971–982

    Article  Google Scholar 

Download references

Acknowledgment

We wish to acknowledge the anonymous reviewers for their critical comments and suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haseeb Ahsan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, H., Khan, F.H. & Ahsan, H. Human papillomavirus: current status and issues of vaccination. Arch Virol 159, 199–205 (2014). https://doi.org/10.1007/s00705-013-1827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1827-z

Keywords

Navigation